Die Grafik zeigt ein extrem massereiches schwarzes Loch, das von einem Staubring (torus) umgeben ist. Der Einfall von Gas auf das schwarze Loch führt zu einem energiereichen Strahl aus Materie und Strahlung, der über kosmologische Distanzen transportiert werden kann. Wenn der Strahl in unsere Richtung zeigt, sprechen wir von einem "Blazar".

Foto: ESA/NASA, the AVO project and Paolo Padovani

Der Einfluss von extrem massereichen schwarzen Löcher beschränkt sich, kosmisch gesehen, auf seine unmittelbare Umgebung - so lautet zumindest die bisherige Annahme. Ein internationales Team von Astronomen hat nun aber entdeckt, dass diese Schwarzen Löcher von millionen- bis milliardenfacher Sonnenmasse auch Auswirkungen auf wesentlich weiter entfernte Objekte und in weiterer Folge selbst auf die Bildung von Galaxien haben können. Die Forscher aus Deutschland, Kanada und den USA beobachteten, dass diffuses Gas im Weltraum die helle Gammastrahlung aus schwarzen Löchern absorbiert und sich dabei aufheizt. Diese überraschende Erkenntnis hat wichtige Konsequenzen für die Entstehung von großen Strukturen im Universum.

Im Zentrum jeder Galaxie befindet sich ein extrem massereiches schwarzes Loch. Es kann hochenergetische Gammastrahlung aussenden und wird dann Blazar genannt. Andere Strahlung wie zum Beispiel sichtbares Licht oder Radiowellen durchquert das Universum ohne Probleme. Dies trifft für energiereiche Gammastrahlung nicht zu. Diese Strahlung steht in Wechselwirkung mit dem optischen Licht, das die Galaxien aussenden, und wird dabei in die Elementarteilchen Elektronen und Positronen umgewandelt. Die Elementarteilchen bewegen sich anfänglich fast mit Lichtgeschwindigkeit, werden aber vom diffusen Gas im Universum abgebremst. Da jeder Bremsprozess Wärme erzeugt, heizt sich das umgebende Gas dabei extrem auf. Es wird im Durchschnitt zehnmal heißer und in den kosmischen Regionen mit weniger Dichte als im Durchschnitt sogar mehr als hundert Mal heißer als bisher angenommen.

Temperaturmessung im Linienwald

"Blazare schreiben die thermische Geschichte des Universums um", so Christoph Pfrommer, einer der Autoren, vom Heidelberger Institut für Theoretische Studien (HITS). Doch wie kann man eine solche Idee überprüfen? In den optischen Spektren von weit entfernten Quasaren sieht man eine Vielzahl von Linien, den sogenannten Linienwald. Der Wald entsteht bei Absorption von ultra-violettem Quasarlicht durch neutrale Wasserstoffatome in den frühen Entwicklungsphasen des Universums. Wenn das Gas nun heißer ist, dann sind die schwächsten Linien verbreitert. Dieser Effekt ergibt eine hervorragende Methode, die Temperatur im jungen Universum zu messen und damit quasi das Weltall in seiner Jugendzeit zu beobachten.

Die HITS-Astrophysiker überprüften diesen neu postulierten Heizprozess nun erstmals mit detaillierten Computersimulationen der kosmologischen Entstehung von Strukturen. Überraschenderweise zeigten sich die Linien gerade so verbreitert, dass sie mit der gemessenen Linienstatistik in den Quasarspektren genau übereinstimmen. "Damit können wir auf elegante Weise ein lange bestehendes Problem mit diesen Quasardaten lösen", stellt Ewald Puchwein fest, der die Simulationen auf dem Großrechner am HITS durchführte.

Der Einfluss auf Galaxienbildung

Welche weiteren Konsequenzen ergeben sich aus dieser neuen Heizquelle? Der Linienwald in den Quasarspektren wird durch Dichteschwankungen im Universum hervorgerufen. Dabei stürzen die dichtesten Fluktuationen im Laufe der Zeit zusammen, um Galaxien und Galaxienhaufen zu bilden, wie wir sie um uns herum beobachten. Wenn das diffuse Gas zu heiß ist, kann es nicht kollabieren, und die Entstehung von Zwerggalaxien verzögert sich oder wird sogar völlig unterdrückt. Hier könnte der Schlüssel zur Lösung eines weiteren Problems in der Theorie der Galaxienbildung liegen, das seit langem besteht: Warum werden in der Nähe unserer Milchstraße und in unterdichten kosmischen Regionen wesentlich weniger Zwerggalaxien beobachtet, als es kosmologische Simulationen vorhersagen?

Volker Springel, Leiter der Forschergruppe am HITS, erklärt: "Besonders aufregend an dem neuen Prozess des Blazarheizens ist, dass dieser Effekt gleich mehrere Rätsel in der kosmologischen Strukturentstehung erklären kann." Die Gruppe plant nun, die Simulationsmodelle weiter zu verfeinern und so die physikalische Natur der Blazare und ihre Auswirkungen auf das heutige Universum noch besser zu verstehen. (red, derstandard.at, 15.5.2012)