Innsbruck – Der zweifache Nobelpreisträger Linus Pauling hat 1935 berechnet, wie perfekt Eis theoretisch angeordnet sein kann. Chemikern der Uni Innsbruck und der Technischen Universität Dortmund ist es nun erstmals gelungen, ein spezielles Eis unter Hochdruck genau an diesen Punkt heranzuführen.

Ein gewöhnlicher Eiswürfel aus dem Gefrierschrank ist bei weitem kein perfekter Kristall. Er besteht aus sogenannten "frustrierten Eiskristallen", in denen zwar die Sauerstoffatome geordnet sind, die Wasserstoffatome allerdings völlig ungeordnet bleiben.

Pauling-Entropie

Nimmt die Temperatur ab, nimmt gleichzeitig Entropie – also das Maß für die Unordnung eines Systems – ab, bis theoretisch nur ein möglicher Zustand für ein System übrig bleibt. Genau diesen Punkt berechnete der 1994 verstorbene Pauling in der "Pauling-Entropie" für gewöhnliches Eis. Diese gibt den Unterschied zwischen maximal ungeordnetem und am absoluten Nullpunkt der Temperaturskala bei minus 273,15 Grad Celsius vollständig geordnetem Eis wider.

Doch dieser Wert wurde bisher nie erreicht, obwohl es oft versucht wurde, so Thomas Lörting von der Uni Innsbruck. Der Grund liege darin, dass die Wassermoleküle bei ungefähr minus 170 Grad Celsius einfach aufhören würden, sich zu bewegen. Damit sich aber der perfekte Kristall ausbilden kann, dürfte das erst bei minus 201 Grad Celsius passieren.

Eis XII

Die Wissenschafter experimentieren daher mit Zusatzstoffen, die die Moleküle länger agil halten. Japanische Forscher fanden heraus, dass das mit kleinsten Mengen Kaliumhydroxid gelingt. Kühlten sie das Gemisch ab, ordneten sich die Kristalle zwar auch noch bei minus 210 Grad Celsius, jedoch nicht vollständig und sehr langsam.

"Wir haben versucht, das selbe Spiel mit Kristallen unter Hochdruck-Bedingungen zu spielen", so Lörting. Unter Druck kennt man 15 verschiedene Kristalle von Eis. Lörting und seine Kollegen setzten auf "Eis XII". Diese Variante ist beispielsweise sogar bei Plusgraden (Celsius) herstellbar und könnte in der Natur etwa im Inneren von Eismonden des Jupiter oder Saturn entstehen.

Beweglichkeit erhalten

Unter einem Druck von 8.000 bar und unter Zugabe von Chlorwasserstoff kühlten die Forscher das Eis XII in einer eigens entwickelten Vorrichtung ab. "Wir hatten auch bei sehr tiefen Temperaturen noch genügend Beweglichkeit", berichtet Lörting. Nach zwei Stunden hätten sich so 100 Prozent der Moleküle geordnet, perfekt geordnetes Eis XIV war entstanden. "Wir haben also zum ersten Mal den Übergang von vollständig ungeordnet zu vollständig geordnet geschafft. Das hat noch bei keiner Form von Eis irgendjemand jemals geschafft", freute sich der Forscher über das im Fachblatt "Nature Communications" veröffentlichte Ergebnis.

Ließen sich die Forscher beim Abkühlen genügend Zeit, erreichten die Messwerte sogar sehr genau das von Pauling errechnete Niveau. "Es war natürlich wunderschön, dass das wirklich mit dieser Vorhersage von vor 80 Jahren zusammengepasst hat. Pauling hat davon gesprochen, dass das ein Traum für ihn wäre", so der Forscher.

Im Zuge der Arbeit habe man sehr viel über die Abläufe in den Netzwerken und deren Beeinflussung gelernt. Es sei nun denkbar, Prozesse, die bei hohen Temperaturen sehr schnell ablaufen, sozusagen in Zeitlupe in diesem speziellen Eis, ablaufen zu lassen. Das könnte Einblicke in chemische Abläufe ermöglichen, die so vielleicht außerhalb der Erde unter Extrembedingungen stattfinden. (APA, red, 19.6.2015)