Ein isolierter Neutronenstern mit schwachem Magnetfeld in der Kleinen Magellanschen Wolke.

Foto: ESO/NASA, ESA, Vogt et al.

Garching – In der Kleinen Magellanschen Wolke in etwa 200.000 Lichtjahren Entfernung haben Astronomen erstmals einen speziellen Typ von Neutronenstern außerhalb unserer Milchstraße entdeckt. Die eindrucksvollen neuen Aufnahmen von bodengebundenen und weltraumbasierten Teleskopen haben es den Forschern ermöglicht, den stellaren Leichnam innerhalb von Gasfilamenten zu identifizieren, die von einer 2.000 Jahre alten Supernova-Explosion zurückgelassen wurden. Während das MUSE-Instrument am Very Large Telescope der ESO entdeckt hat, wo sich dieses schwer fassbare Objekt versteckt, konnten bereits vorhandene Daten des Chandra-Röntgenobservatoriums seine Identität als isolierter Neutronenstern bestätigen.

Neue Daten haben einen bemerkenswerten Ring aus Gas in einem System namens 1E 0102.2-7219 sichtbar gemacht, der sich langsam in den Tiefen zahlreicher anderer sich schnell bewegender Gas- und Staubfilamente ausdehnt, die nach einer Supernova-Explosion zurückbleiben. Diese Entdeckung ermöglichte es einem Team um Frédéric Vogt, einem ESO-Wissenschafter in Chile, den ersten isolierten Neutronenstern mit schwachem Magnetfeld jenseits unserer eigenen Milchstraße aufzuspüren. Ihre Entdeckung wurde nun in der Fachzeitschrift "Nature Astronomy" veröffentlicht

Rätselhafte Röntgenquelle

Das Team stellte fest, dass der Ring auf einer Röntgenquelle zentriert war, die Jahre zuvor entdeckt und mit p1 bezeichnet worden war. Die Natur dieser Quelle war ein Rätsel geblieben. Insbesondere war nicht klar, ob p1 tatsächlich innerhalb oder hinter dem Supernovaüberrest liegt. Erst als der Gasring – der sowohl Neon als auch Sauerstoff enthält – mit MUSE beobachtet wurde, bemerkte das Wissenschafterteam, dass p1 genau in seiner Mitte steht. Die Wahrscheinlichkeit, das dies Zufall ist, ist minimal.

Die Forscher erkannten, dass p1 im Supernova-Überrest selbst liegen muss, und nachdem der Standort von p1 bekannt war, nutzte das Team vorhandene Röntgenbeobachtungen dieses Objekts vom Chandra-Röntgenobservatorium, um festzustellen, dass es sich um einen isolierten Neutronenstern mit einem schwachen Magnetfeld handeln muss. "Wenn man nach einer Punktquelle sucht, ist es natürlich ideal, wenn das Universum buchstäblich einen Kreis darum zieht, um einem zu zeigen, wo man suchen muss", erklärt Vogt.

Material für neue Sterne und Planeten

Wenn massereiche Sterne als Supernovae explodieren, hinterlassen sie ein knotiges Netz aus heißem Gas und Staub, das man als Supernova-Überrest bezeichnet. Diese turbulenten Strukturen sind der Schlüssel zur Umverteilung der schwereren Elemente, die von massereichen Sternen während ihres Lebens und Sterbens ausgekocht werden, in das interstellare Medium, wo sie schließlich neue Sterne und Planeten bilden.

Typischerweise kaum zehn Kilometer im Durchmesser und doch schwerer als unsere Sonne, werden isolierte Neutronensterne mit schwachen Magnetfeldern im ganzen Universum vermutet, aber sie sind sehr schwer zu finden, da sie nur bei Röntgenwellenlängen leuchten. Die Tatsache, dass die Bestätigung von p1 als isolierter Neutronenstern durch optische Beobachtungen ermöglicht wurde, ist daher besonders spannend.

Koautorin Liz Bartlett, eine weitere ESO-Stipendiatin in Chile, fasst diese Entdeckung zusammen: "Dies ist das erste Objekt seiner Art, das jenseits der Milchstraße bestätigt werden konnte, was nur mit MUSE als Hilfsmittel möglich wurde. Wir denken, dass dies neue Wege der Entdeckung und Erforschung dieser schwer fassbaren Sternenüberreste eröffnen könnte." (red, 8.4.2018)