Das Ende von Eiszeiten fällt mit Änderungen des Neigungswinkels der Erdachse zusammen.
Foto: Imago Images/YAY Images/Achim Baqué

Innsbruck – Die Rotationsachse der Erde wackelt. Diese sogenannte Präzession beeinflusst die saisonale Sonnenlichtmenge, die auf die Erdoberfläche trifft. Nun hat ein Forscherteam mit österreichischer Beteiligung herausgefunden, dass der Grad der Schiefstellung der Erdachse, wissenschaftlich Obliquität genannt, offenbar mit den Eiszeiten zusammenhängt: In der jüngsten Million Jahre war sie immer dann besonders groß, wenn Kaltperioden zu Ende gingen. Eine hohe Obliquität ist demnach ausschlaggebend für den Beginn von Warmzeiten.

Derzeit vollführt die Erde etwa alle 100.000 Jahre einen Wechsel von Kalt- und Warmzeiten. Daran sind periodische auftretende Änderungen der Erdbahn-Eigenschaften beteiligt, nämlich besagte Neigung der Erdachse (Obliquität), wie stark die Erdumlaufbahn von einer Kreisbahn abweicht (Exzentrizität) sowie die Schwingung der Erdachse (Präzession). Alle drei Phänomene entstehen durch Anziehungskräfte (gravitative Einflüsse) anderer Planeten des Sonnensystems.

Schnellerer Wechsel

Bis vor rund einer Million Jahre war der Takt jedoch ein anderer und der Wechsel zwischen Kalt- und Warmzeiten erfolgte alle 41.000 Jahre. Was das Tempo gedrosselt und diesen "Mittelpleistozän-Übergang" verursacht hat, ist unklar. Ein Team um Russell Drysdale von der Universität Melbourne (Australien) hat die Umstände der ersten Kaltzeit-Enden nach diesem Übergang in der aktuellen Studie im Fachjournal "Science" untersucht.

Dazu hat das Team Tropfsteine der Corchia Höhle in den Apuanischen Alpen Italiens analysiert, die zwischen 970.000 und 810.000 Jahre alt sind. "Dieser Zeitraum beinhaltet zwei Terminationen, also zwei Übergange von einer Kalt- in eine Warmzeit", so Christoph Spötl vom Institut für Geologie der Universität Innsbruck: Es handle sich dabei um die ersten zwei Terminationen am Beginn des damals einsetzenden 100.000-Jahre-Takts.

Das Forscherteam untersuchte Tropfsteine in der Corchia Höhle in den Apuanischen Alpen.
Foto: Adriano Roncioni, Gruppo Speleologico Lucchese

So präzise wie nie zuvor

Durch Uran-Blei-Datierung (bei der die radioaktiven Zerfallsreihen von Uran zu Blei für die Datierung herangezogen werden) haben die Forscher aus Melbourne das genaue Alter der einzelnen Tropfstein-Lagen mit noch nie dagewesener Präzision bestimmt, erklärte Spötl. In Innsbruck habe man wiederum anhand der eingelagerten Sauerstoff-Isotopen-Verteilung (das unterschiedliche Verhältnis von Sauerstoff-Typen unterschiedlicher Masse) das jeweils herrschende Klima ermittelt. In einen größeren Zeitrahmen reihten die Forscher die jeweils maximal 10.000 Jahre umspannenden Tropfstein-Zeitreihen mithilfe von Tiefseesedimentablagerungen im Atlantik westlich Portugals ein, die für sich alleine nicht genau datierbar sind, aber eine lückenlose Abfolge ermöglichen.

Anhand all dieser Daten sei man zu dem Ergebnis gekommen, dass die beiden ersten Terminationen nach dem Mittelpleistozän-Übergang, also Wechsel von Kalt- zu Warmzeiten, in Zeiträumen stattfanden, als eine hohe Obliquität (Neigung der Erdachse) vorherrschte, während die Präzession (Schwingung der Erdachse) unterschiedlich war.

Wichtig für das Erdklima

"Damit dürften die Änderungen in der Schiefe der Erdachse ausschlaggebend gewesen sein", meint Spötl: "Wir haben dieses Konzept dann auch für alle jüngeren Wechsel von Kalt- zu Warmzeiten getestet und kamen zum gleichen Schluss, dass jedes Mal die Änderungen in der Neigung der Erdachse die Ursache war."

Die Obliquität sei somit auch in der heutigen "100.000er-Welt" für das Erdklima von essenzieller Bedeutung. Das sei nicht verwunderlich, so Spötl: Sie ist nämlich eine Grundvoraussetzung, dass auch hohe Breiten viel Sonnenenergie abbekommen, und die Eisschilde dort schmelzen können. (red, APA, 16.3.2020)