Neben Sternen, Sternenleichen wie Schwarzen Löchern und Neutronensternen und Planeten beherbergen Galaxien auch eine große Menge an interstellarem Gas. Diese Gas wird durch physikalische Prozesse wie galaktische Rotation, Supernova-Explosionen, Magnetfelder, Turbulenzen und nicht zuletzt die Schwerkraft in Bewegung gesetzt und formt ein Netzwerk aus Gasströmen. Wie sich diese Bewegungen direkt auf die Stern- und Planetenentstehung auswirken, lässt sich nur schwer feststellen, da die Gasbewegung über viele räumliche Größenordnungen gemessen und diese Bewegung dann mit den beobachteten Strukturen in Verbindung gebracht werden muss.

Moderne astrophysikalische Instrumente kartografieren heute routinemäßig riesige Bereiche des Himmels, wobei einige Karten Millionen von Pixeln enthalten, von denen jede Hunderte bis Tausende von unabhängigen Geschwindigkeitsmessungen enthält. Folglich ist die Messung dieser Bewegungen sowohl wissenschaftlich als auch technologisch äußerst anspruchsvoll. Um diesen Herausforderungen zu begegnen, machte sich ein internationales Forscherteam unter der Leitung von Jonathan Henshaw vom Max-Planck-Institut für Astronomie (MPIA) in Heidelberg daran, mithilfe von Beobachtungen des Gases in der Milchstraße und einer nahen Galaxie die Gasbewegungen in einer Vielzahl unterschiedlicher Umgebungen zu messen.

Die Visualisierung zeigt Geschwindigkeitsströmungen in der Spiralgalaxie NGC 4321, gemessen mit Hilfe der Radioemission des molekularen Gases (Kohlenmonoxid).
Illustr.: T. Müller/J. Henshaw/MPIA

Neue Perspektive auf das interstellare Medium

Sie erfassten diese Bewegungen, indem sie die scheinbare Änderung der Frequenz des von den Molekülen emittierten Lichts maßen, die durch die relative Bewegung zwischen der Lichtquelle und dem Beobachter verursacht wird; ein Phänomen, das als Dopplereffekt bekannt ist. Durch den Einsatz neuartiger Software, die von Henshaw und Mitautor Manuel Riener (ebenfalls MPIA) entwickelt wurde, konnte das Team Millionen von Messungen analysieren. "Diese Methode ermöglichte es uns, das interstellare Medium auf eine neue Art und Weise zu sehen", erläutert Henshaw.

Die Forscher fanden heraus, dass die Bewegungen des kalten molekularen Gases in der Geschwindigkeit zu fluktuieren scheinen, was an Wellen an der Oberfläche des Ozeans erinnert. Diese Fluktuationen stellen Gasbewegungen dar. "Die Schwankungen selbst waren nicht besonders überraschend. Wir wissen, dass sich das Gas bewegt", gibt Henshaw zu bedenken. Steve Longmore, Mitautor des Artikels im Fachjournal "Nature Astronomy", der an der Liverpool John Moores University forscht, fügt hinzu: "Was uns überraschte, war, wie ähnlich die Geschwindigkeitsstruktur dieser verschiedenen Regionen aussah. Es spielte keine Rolle, ob wir eine ganze Galaxie oder eine einzelne Wolke innerhalb unserer eigenen Galaxie betrachteten; die Struktur war mehr oder weniger die gleiche."

Um die Eigenschaften der Gasströme besser zu verstehen, wählte das Team mehrere Regionen für eine eingehende Untersuchung aus, wobei es fortschrittliche statistische Techniken einsetzte, um nach Unterschieden zwischen den Schwankungen zu suchen. Durch die Kombination einer Vielzahl verschiedener Messungen konnten die Forscher feststellen, wie die Geschwindigkeitsfluktuationen von der räumlichen Verteilung abhängen.

Parallelen zwischen unterschiedlichen Größenordnungen

"Ein besonderes Merkmal unserer Analysetechniken ist, dass sie empfindlich für periodische Schwankungen sind", erklärt Henshaw. "Wenn in den Daten periodische Muster auftreten, wie beispielsweise riesige Molekülwolken in gleichen Abständen entlang eines Spiralarms, können wir direkt die Größenskala bestimmen, auf der sich das Muster wiederholt." Das Team identifizierte drei filamentartige Gasstränge, die, obwohl sie sehr unterschiedliche Größenordnungen abbilden, alle eine Struktur zu zeigen scheinen, die entlang ihres Verlaufs nahezu regelmäßig unterteilt ist, wie Perlen auf einer Schnur. Dabei spielt es keine Rolle, ob es sich um riesige Molekülwolken entlang eines Spiralarms oder um winzige, dichte Kerne innerhalb der Wolken handelt, die entlang eines Filaments Sterne bilden.

Verteilung des molekularen Gases (Kohlenmonoxid) im südlichen Spiralarm der Galaxie NGC 4321 über eine Strecke von etwa 15.000 Lichtjahren.
Grafik: J. Henshaw/MPIA

Das Team entdeckte, dass die Geschwindigkeitsschwankungen, die mit gleichmäßig entfernten Strukturen verbunden sind, alle ein charakteristisches Muster aufweisen. "Die Fluktuationen sehen aus wie Wellen, die entlang des zentralen Grats der Filamente oszillieren. Sie haben eine eindeutig definierte Amplitude und Wellenlänge", sagt Henshaw "Der periodische Abstand der riesigen Molekülwolken auf großen Skalen oder einzelner sternbildender Kerne auf kleinen Dimensionen ist vermutlich darauf zurückzuführen, dass ihre Mutterfilamente durch die Schwerkraft instabil geworden sind. Wir sind der Ansicht, dass diese oszillierenden Ströme die Signatur von Gas sind, das entlang der Spiralarme strömt oder in Richtung der Verdichtungen zusammenströmt und neuen Treibstoff für die Sternentstehung liefert."

Immer kleinere Fluktuationen

Allerdings fand das Team auch heraus, dass die Geschwindigkeitsfluktuationen nicht überall so geordnet sind. Innerhalb von riesigen Molekülwolken weisen sie zwischen einzelnen Wolken und den winzigen Wolkenkernen keine charakteristische Skala auf. "Die Dichte- und Geschwindigkeitsstrukturen, die wir in riesigen Molekülwolken sehen, sind maßstabsunabhängig. Die turbulenten Gasströmungen, die diese Strukturen erzeugen, bilden eine chaotische Kaskade, die bei näherer Betrachtung immer kleinere Fluktuationen offenbart – ähnlich wie bei einem Romanesco-Brokkoli oder einer Schneeflocke", sagt Diederik Kruijssen von der Universität Heidelberg. Dieses maßstabsfreie Verhalten findet demnach zwischen zwei wohldefinierten, geordneten Extremen statt: dem großen Maßstab der gesamten Wolke und dem kleinen Maßstab der Wolkenkerne, die einzelne Sterne bilden. Die Forrscher schlossen daraus, dass diese beiden Extreme bestimmte charakteristische Größen besitzen, aber dazwischen herrscht Chaos.

"Stellen Sie sich die riesigen Molekülwolken als einander gleich weit entferne Megastädte vor, die durch Autobahnen miteinander verbunden sind", erläutert Henshaw. "Aus der Vogelperspektive erscheint die Struktur dieser Städte mit den Autos und den Menschen, die sich durch sie hindurchbewegen, chaotisch und ungeordnet. Wenn wir jedoch einzelne Straßen betrachten, sehen wir Menschen, die von weit her angereist sind und ihre einzelnen Bürogebäude in geordneter Weise betreten. Die Bürogebäude stellen die dichten und kalten Wolkenkerne aus Gas dar, aus denen Sterne und Planeten geboren werden." (red, 13.7.2020)